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1. Introduction

Classical statistical or quantum many-body systems can be studied in the presence of

spatial inhomogeneity. Indeed, it is quite rare that a perfectly clean system is realized in

experiments, and hence having a good understanding of effects of randomness/impurities is

to some extent necessary. Besides such a practical motivation, disorder by itself or combined

effects of disorder and interactions can give rise to rich phenomena, which deserve studies

in their own right. To name a few, complex behaviors in spin glass systems such as the

Ising model with random bonds (random ferromagnetic interactions) or random magnetic

field [1], or Anderson localization of electronic systems in the absence/presence of electron-

electron interactions [2, 3] have been discussed.

When the amount of disorder is small or disorder is (marginally) irrelevant in the

renormalization group (RG) sense, effects of disorder can be studied perturbatively around

a clean critical point. On the other hand, randomness is not necessarily small and it

can drive the system to a new type of disorder-dominated critical point, called random

critical point. Examples include a multicritical point in the random bond Ising model [1,

4], the integer quantum Hall plateau transition [5], and a possibility of metal-insulator

transitions in (2+1)-dimensional correlated electron systems [6]. These putative critical
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points are beyond perturbative or mean-field treatments and understanding the nature of

these random critical points has remained to this date as a major challenge in condensed

matter physics.

It is the purpose of this paper to discuss quenched disordered systems in the frame-

work of AdS/CFT correspondence [7]. Effects of disorder have been studied as a per-

turbation to weakly coupled and exactly solvable (conformal) field theories, in terms of

the perturbation theory or perturbative RG, assuming the disorder strength is small (see,

e.g., [8 – 12]). On the other hand, if we apply the AdS/CFT correspondence, it might be

possible to solve strongly disordered problems because AdS/CFT is a strong/weak dual-

ity. In AdS/CFT setups, CFTs are typically non-abelian gauge theories [7] or the critical

O(N) vector model [13]. Even though their precise relations to real condensed matter

systems are not clear at present, recently there have been several hopes and circumstantial

evidences that the AdS/CFT can capture essential features of condensed matter systems,

such as the electrical and thermal transport [14], the quantum Hall plateau transition [15],

the superconductivity [16], the entanglement entropy [17], the scale invariant theories with

non-trivial dynamical exponents [18], and so on. In the presence of weak randomness a

holographic analysis for disordered systems was given in [19].

Assuming that disorder configurations such as the location of impurities are distributed

according to some underlying probability distribution, quantities of our interest (e.g., local

correlation functions) also fluctuate from different disorder configurations. We are thus

forced to deal with the probability distribution of observables or in particular the first (or

first few) moment(s) of the observables. At this point, it is important to emphasize that

the average over disorder configurations is taken after we take the statistical mechanical

ensemble average over spins, or the path integral over (quantum) field configurations and

so on. This is a major difficulty in disordered systems since for a given distribution of dis-

order we do not have translation invariance, although correlation functions after quenched

disorder averaging may be translation invariant. A standard tool to analyze effects of dis-

order is the replica method (or replica trick) (see, e.g., [20, 21, 10] and section 2 in the

present paper).

In this paper, we consider a CFT deformed by a certain operator with its coupling

changing from position to position. We will show that with the replica method, a general-

ization of the double trace interaction [22, 23] can nicely describe the randomness. Based

on this idea, we will formulate the holographic replica method with some examples in sec-

tion 3. In particular, we calculate the two point functions and show that their scaling

behaviors importantly change due to the randomness. In section 4, we will give a com-

plementary field theoretic analysis of the same system and confirm that it agrees with the

holographic result. In appendix A, we will present a generalized holographic replica model

and realize the order/disorder phase transition.

In contrast to clean systems, the structure of the RG flows connecting random critical

points is less understood in disordered systems. This is so since critical theories describing

random critical points are expected to be non-unitary. This in turn means we cannot

use, in two dimensions, say, the c-theorem by Zamolodchikov, to know the direction of

the RG flow. In particular, when the supersymmetric disorder averaging is applicable,
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the central charge is always vanishing c = 0 because of the cancellation among matter

fields and ghosts. Gurarie [24, 12] introduced, with the use of the supersymmetric disorder

averaging, the effective central charge (or Gurarie’s b) and proposed to use it to measure

the degrees of freedom of a disordered two-dimensional CFT. Later, the equivalent quantity

in the replica method (which we call ceff in this paper) was introduced by Cardy [25]. (See

appendix B.) It is an open problem if the effective central charge ceff shows the irreversible

relation cIR
eff < cUV

eff along the RG flow, as the central charge in two-dimensional unitary

CFTs does. In appendix B, we take a first step of the holographic calculation of ceff and

show that the c-theorem like relation cIR
eff < cUV

eff holds in examples where we can calculate

ceff straightforwardly.

2. Disordered systems and the replica method

Let us start by reviewing how the replica method can be applied to quenched disordered

systems (see, for a review, e.g. [20, 21, 10]).1 Our arguments cover any quantum field theory

(QFT) and we simply represent the action of a d-dimensional QFT as S0[ϕ] =
∫

ddxL0(ϕ)

with abstractly expressing all fields as ϕ. We pick up a certain operator in this theory and

denote it by O(x). We perturb this theory by adding an interaction of the form

S = S0 +

∫

ddx g(x)O(x). (2.1)

This defines a classical disordered system in d spacial dimensions. In a d + 1-dimensional

quantum system, a spatially inhomogeneous perturbation by disorder is given by
∫

dtddx g(x)O(x, t), where t represents the (imaginary) time direction, and the disorder

configuration g(x) depends only on the spacial coordinates x. Below we shall proceed in

the classical setup, though we can extend to the latter case straightforwardly.

A quenched disordered system (or random system) is such a system where the coupling

g(x) is depending randomly on the spatial coordinates x. We assume that the randomness

is distributed with a gaussian profile, i.e., its distribution functional is given by

P [g(x)] ∝ e
− 1

2f

R

ddx g(x)2
(2.2)

with f > 0. The free energy in the disordered system log Z can be found by simply taking

the gaussian average of log Z over disorder, where · · · represents disorder averaging with

respect to the distribution P [g(x)].

In disordered systems, we are interested in correlation functions averaged over disor-

dered configurations. An important point is that this random average is not equivalent

to taking the random average for the action itself (2.1). Instead the averaged correlation

1There are two types of disorder: annealed disorder and quenched disorder. The former is the case where

impurities are in thermal equilibrium with main system, while in the latter, it is not. In this paper we only

discuss the latter case. Refer to [10] for more details.
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function is expressed as follows;

〈O(x1)O(x2) · · · O(xk)〉 = (2.3)

=

∫

Dg(x)P [g(x)]

[

∫

Dϕe−S0[ϕ]−
R

ddx g(x)O(x)O(x1)O(x2) · · · O(xk)
∫

Dϕe−S0[ϕ]−
R

ddx g(x)O(x)

]

.

The most important technical problem is how to deal with the factor of the inverse partition

function. One way to overcome this difficulty is to introduce ghosts and represent the

inverse partition function by that of ghosts. This is called the supersymmetric method and

at a random fixed point it is typically described by a non-unitary CFT with the vanishing

total central charge (see, e.g., [26, 12, 9]). This procedure is quite useful since we can utilize

the knowledge of quantum field theory technique. However, it has a severe disadvantage

that presently it can be used only for limited situations, where the original theory described

by S0 is a free field theory.

Instead of proceeding along this direction, we would like to resort to another method

called the replica method, which can be applied to any quantum field theories (refer to,

for example, [20]). The method may be summarized as follows. First we introduce n

copies of the QFT and denote the i-th copy as QFTi. Next we prepare n copies of the

field ϕi in QFTi. Then we consider the path integral in the product of n QFTs, i.e.

QFT1 ⊗ QFT2 ⊗ · · · ⊗ QFTn, given by

∫

Dg(x)P [g(x)]
n
∏

i=1

[Dϕi] e−
Pn

i=1 S0[ϕi]−
R

ddx g(x)
Pn

i=1 Oi(x)O1(x1)O1(x2) · · · O1(xk)

=

∫ n
∏

i=1

[Dϕi] e
−

Pn
i=1 S0[ϕi]+

f
2

R

ddx(
Pn

i=1 Oi(x))
2

O1(x1)O1(x2) · · · O1(xk),

(2.4)

where O1(x) is the operator O(x) in the Hilbert space of QFT1. In the replica method,

we identify the average (2.3) with the n → 0 limit of (2.4). The parameter n is originally

a positive integer number, but we assume the analytical continuity with respect to n and

take the limit n → 0 finally. Indeed the inverse partition function required in (2.3) formally

appears in this limit.

Let us define the scaling dimension of O(x) by ∆, then the deformation induced by

the randomness is relevant or marginal if

2∆ ≤ d. (2.5)

This condition is clear from power counting in the replicated action (2.4) and is called

Harris criterion.

We consider large N gauge theories or a O(N) vector model as examples of QFT since

they appear in AdS/CFT correspondence. The operator O that couples to disorder g(x)

is then given by a single trace operator, and with the replica trick the disorder effect is

expressed by the double trace deformations as in (2.4), which have been studied in the

context of AdS/CFT [22, 23, 27]. If we are interested in strongly coupled (or strongly
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disordered) regime of field theories, then the path integral in (2.4) would be quite difficult

to compute. Since the AdS/CFT correspondence maps strongly coupled CFTs to weakly

coupled gravity theories, it is desirable to establish dual description to analyze strongly

coupled disordered systems. In this paper we mainly focus on the planar limit of large N

gauge theory, which is dual to the classical limit of the dual gravity theory.

3. Disordered systems via AdS/CFT

Now we move on to the main part of this paper: formulation of the AdS/CFT corre-

spondence for disordered systems. We consider a standard setup of AdS/CFT, where a

d dimensional Euclidean CFT is dual to a gravity theory on d + 1 dimensional Euclidean

anti-de Sitter (AdS) space described by the metric

ds2 =
dz2 +

∑

µ dxµdxµ

z2
. (3.1)

The dual CFT is proposed to live on the boundary located at z = 0.

A spin-less operator O, which is typically a single trace operator in a gauge theory, is

supposed to be dual to a scalar field2 φ with a mass m in the bulk AdS space. The relation

between the conformal dimension ∆ of O and the mass m is given by the formula [28, 29]

∆± =
d

2
±
√

m2 +
d2

4
. (3.2)

For our purpose, we need a relevant operator in the replicated theory, and hence we re-

quire (2.5). From this condition we pick up the smaller dimension ∆− in (3.2) and we call

it simply ∆ below. The behavior of φ near the boundary z = 0 looks like

φ(z, x) ∼ zd−∆(α(x) + O(z2)) + z∆

(

β(x)

2∆ − d
+ O(z2)

)

. (3.3)

In the standard interpretation of AdS/CFT [31], α(x) is regarded as a source to the dual

operator O, while β(x) is its expectation value 〈O(x)〉 = β(x). We demand the normaliz-

ability for the mode with φ ∼ z∆, which leads to a constraint on the range of ∆. Combining

with (2.5) we have to choose3

d − 2

2
≤ ∆ ≤ d

2
. (3.4)

The lower bound is known to be dual to the unitarity bound in the dual CFT [31].

For the scalar field φ we require the regularity at z = ∞, then α(x) and β(x) are

related as follows

β(x) = π−d/2 (2∆ − d)Γ(∆)

Γ(∆ − d/2)

∫

ddx′ α(x′)

|x − x′|2∆ . (3.5)

2We will stick to the scalar field example just for simplicity. We can generalize this to, say, vector and

spinor fields straightforwardly.
3In order for ∆ to satisfy this condition, the mass of φ should be in the range of −d2/4 < m2 <

(1− d2)/4. In AdS space tachyonic modes are allowed due to the curvature, and the lower bound is known

as Breitenlohner-Freedman bound [30].
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In the momentum space representation it can be expressed as

β(k) = G(k)α(k), (3.6)

where G(k) is given by4

G(k) =
(2∆ − d)Γ(d/2 − ∆)

Γ(∆ − d/2)

(

k

2

)2∆−d

. (3.8)

Since we chose ∆− instead of ∆+ as the conformal dimension of dual operator O, the term

proportional to α(x) is less singular than the one proportional to β(x) in the boundary

limit as opposed to the usual cases. Despite this fact we can still treat the former as a

source because α(x) and β(x) are related to each other via a canonical transformation as

first claimed by Klebanov and Witten [31].

3.1 Double trace deformation in AdS/CFT

According to [23] (see also [27]) a multi-trace deformation
∫

ddxW (O) can be incorporated

into the formulation of AdS/CFT correspondence. Here we focus on the deformation of a

CFT by a double trace operator of the form (λ > 0)

Sint =
λ

2

∫

ddx (O(x))2, (3.9)

as a preparation for the later analysis of disordered systems. Assigning the boundary

behavior (3.3) and demanding the regularity at z → 0, the scalar field is uniquely parame-

terized by α(x) or β(x). As mentioned before these two parameters can be exchanged by a

Legendre transform, and it is useful for our purpose to use β(x) instead of α(x). Inserting

the scalar field into the kinetic term and partially integrating over the coordinate z, we

can obtain the action in terms of α(x). Then the Legendre transform leads to

S[β] =
1

2

∫

ddk
β(k)β(−k)

G(k)
. (3.10)

Notice that the result is expressed as a field theory on the boundary of AdS space.

Recall that the expectation value of O(x) corresponds to the variable β(x). Then the

total action S in the presence of the double trace deformation (3.9) and a source to φ is

expressed as

S[β, J ] =

∫

ddk

[

1

2
β(k)

(

1

G(k)
+ λ

)

β(−k) + β(−k)J(k)

]

. (3.11)

The equation of motion for β leads to

1 + λG(k)

G(k)
· β(k) + J(k) = 0. (3.12)

4We employed the formula
Z

ddx
eikx

x2∆
= 2d−2∆π

d

2
Γ(d/2 − ∆)

Γ(∆)
k2∆−d. (3.7)
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In other words, the boundary condition for φ is now changed into α + λβ + J = 0.

From (3.12) we can express

S[J ] = −1

2

∫

ddk J(k)

(

G(k)

1 + λG(k)

)

J(−k), (3.13)

and in the end we obtain the two point function

δ2

δJ(k)δJ(−k)
e−S[J ]

∣

∣

∣

∣

J=0

= 〈O(k)O(−k)〉 =
G(k)

1 + λG(k)
(3.14)

taking the derivatives with respect to the source J(k).

Due to the deformation of the (marginally) relevant operator (3.9), the conformal

symmetry should be broken in the CFT side. Nevertheless, the vacuum solution in the

AdS side remains trivial φ(x, z) = 0 even in the presence of non-vanishing λ. Hence the

background is still AdSd+1, which implies the conformal symmetry of dual CFT. This is

so since our calculation neglects backreaction in the gravity theory, which should be taken

into account from one-loop order [32]. Notice that the two point function (3.14) breaks the

conformal invariant.5 In the UV limit k → ∞, it is approximated by

〈O(k)O(−k)〉 ∼ G(k) ∼ k2∆−d, (3.15)

while in the IR limit we find

〈O(k)O(−k)〉 ∼ 1

λ
− 1

λ2G(k)
∼ const. + O(kd−2∆). (3.16)

This shows that under the RG flow the operator with the conformal dimension ∆ (= ∆−)

flows to the one with the conformal dimension d − ∆ (= ∆+) [23, 32, 33]. In the IR

limit conformal invariance is recovered and the operator dual to the scalar field φ has the

conformal dimension ∆+. This does not cause any problems since the modes for both ∆−

and ∆+ are normalizable due to our restriction (3.4).

3.2 Holographic replica method

Now we are prepared to present the formulation of AdS/CFT for disordered systems by

employing the replica method.6 If we consider a CFT with the random interaction (2.1),

it is described by a deformation of the product of n copies of the CFT, CFT1 ⊗CFT2 ⊗ · ·
· ⊗CFTn, in the replica method. Assuming the gaussian distribution of disorder (2.2), the

theory is deformed by double trace operators as (2.4)

Sint = −f

2

∫

ddx

(

n
∑

i=1

Oi(x)

)2

, (3.17)

5At the planar limit generic correlation functions do not receive any contributions from the deformation

of double trace operator. This fact can be understood by explicitly writing down the double line Feynman

diagrams. The correlation functions involving O are exceptions.
6A slightly different replica method has been applied to AdS/CFT in [17] to compute the entanglement

entropy [34].
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where we denote Oi as the operator O with its conformal dimension ∆ in CFTi. Compared

with the standard double trace deformation (3.9), the sign of the coupling (3.17) is opposite

(since f in (2.2) must be positive), a common feature of the replicated theory in disordered

systems. Thus, one may worry that this interaction may cause an instability in this theory.

If we wish, we can add a conventional double trace deformation (3.9) to the original theory

together with the randomness (2.1). In the replica method, it means that we consider the

product of n CFTs with the following generalized interaction

Sint = −f

2

∫

ddx

(

n
∑

i=1

Oi(x)

)2

+
λ

2

∫

ddx

n
∑

i=1

(Oi(x))2. (3.18)

Later, however, we will see that the limit λ = 0 of two point functions is well-defined, and

the two point functions show more interesting scaling behaviors than the case with λ > 0.

In the dual AdS side, the spacetime is defined by n copies of an AdS space. They are

disconnected in the bulk and attached to the same boundary Rd at z = 0. As seen above,

the deformation by the double trace operator changes the boundary condition for the dual

field, therefore after the deformation by (3.18) the fields in copies of an AdS space interact

with each other through the boundary conditions. Interestingly, this setup with multiple

AdS spaces has recently been discussed in [35, 36] from a different motivation. Originally

we have n gravitons dual to n stress-energy tensors conserved independently. After we put

the interaction (3.18), only a combination of stress-energy tensors is conserved and hence

there exists only one dual massless graviton as argued in [35, 36]. In the AdS gravity the

other n − 1 gravitons become massive due to the one-loop contribution, while in the dual

CFT, the conformal dimension of other combinations of stress-energy tensors deviates from

∆ = d to d+δ(n) due to the interaction (3.18) [25, 35, 36]. The standard bulk to boundary

relation relates δ(n) to the mass of n − 1 gravitons as M2
g = dδ(n).

In the following, we calculate two point functions at the tree level of AdS gravity in

this setup. We denote φi as the field corresponding to Oi, and define αi(x) and βi(x)

from the asymptotic behaviors as in (3.3). Following the previous analysis, we obtain the

deformed action as

S[β, J ]n =

∫

ddk

[

∑n
i=1 βi(k)βi(−k)

2G(k)
− f

2

(

n
∑

i=1

βi(k)

)

·
(

n
∑

i=1

βi(−k)

)

(3.19)

+
λ

2

n
∑

i=1

βi(k)βi(−k) + β1(−k)J1(k) + β2(−k)J2(k)

]

.

Here we included the source terms only for β1 and β2 without losing generality, by taking

the symmetry into account. Notice that when λ > 0, this system (3.19) is stable in the

n → 0 limit.7 Taking the limit of λ → 0 in the end, we define the theory with λ = 0.

7Indeed, if we redefine β̂0 = 1√
n

P

i
βi, β̂i = βi −

1
n

P

j
βj , then the interaction terms are given by

1
2
(λ − nf)β̂2

0 + λ
2

P

i
β̂2

i . Therefore, any λ > 0 would be enough to stabilize the saddle points for small n.
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From the equations of motion δS/δβi = 0, we find

β1 =
−fG(k)J2(k) − (1 + (λ + (1 − n)f)G(k))J1(k)

(1 + λG(k))(1 + (λ − nf)G(k))
G(k),

β2 =
−fG(k)J1(k) − (1 + (λ + (1 − n)f)G(k))J2(k)

(1 + λG(k))(1 + (λ − nf)G(k))
G(k),

β3 = · · · = βn = − fG(k)2(J1(k) + J2(k))

(1 + λG(k))(1 + (λ − nf)G(k))
. (3.20)

From these equations we can express the action S as

S[J ]n = −1

2

∫

ddk

(

G(k) (1 + (λ + f(1 − n))G(k)) (J1(k)J1(−k) + J2(k)J2(−k))

(1 + λG(k))(1 + (λ − nf)G(k))

+
2fG(k)2J1(k)J2(−k)

(1 + λG(k))(1 + (λ − nf)G(k))

)

. (3.21)

While n is a positive integer in our starting expression, in (3.21) we are free to regard n as

a continuous valuable, which is a crucial assumption for the replica method.

Two point functions can be computed from (3.21) as

〈O1(k)O1(−k)〉n =
G(k) (1 + (λ + f(1 − n))G(k))

(1 + λG(k))(1 + (λ − nf)G(k))
, (3.22)

〈O1(k)O2(−k)〉n =
fG(k)2

(1 + λG(k))(1 + (λ − nf)G(k))
. (3.23)

The subscript n implies that the two point functions are evaluated in the replicated theory

with fixed n. As discussed in section 2, we take the limit n → 0 and finally find in the

disordered system as

〈O(k)O(−k)〉 = 〈O1(k)O1(−k)〉 =
(1 + (f + λ)G(k)) G(k)

(1 + λG(k))2
. (3.24)

We can also compute 〈O(k)〉〈O(−k)〉, which involves, when replicated, two distinct replicas,

〈O(k)〉〈O(−k)〉 = 〈O1(k)O2(−k)〉 =
fG(k)2

(1 + λG(k))2
. (3.25)

Unlike 〈O(k)O(−k)〉, 〈O(k)〉〈O(−k)〉 is made non-zero solely because of disorder, and

hence our analysis indeed describes a disordered phase. Correlation functions of this type

have been used as an order parameter in spin glass theories [1].

When λ > 0, we can observe from the two point function (3.24) that the operator

O with conformal dimension ∆ always flows into the one with ∆+ = d − ∆ in the IR

limit k → 0. Therefore, the IR limit of the disordered system looks similar to the theory

deformed by a single double trace operator (3.9).8 In the appendix A, we suggest that

the random spin system, such as the random bond Ising model [4], is analogous to this

8Fixed points for more generic cases with n = 2 are analyzed in [36] and their result is consistent

with ours.

– 9 –



J
H
E
P
1
2
(
2
0
0
8
)
0
6
5

case with λ = f , where the order/disorder phase transition occurs. In the appendix B,

we analyze the effective central charge ceff [25, 8] of this disordered CFT and calculate the

difference between the effective central charge at the UV (trivial) fixed point (cUV
eff ) and

at the IR fixed point (cIR
eff ) . We find that the inequality cIR

eff − cUV
eff ≤ 0 always holds for

any values of λ > 0. This may support an analogue of c-theorem in the disordered system,

though there has been no proof of the c-theorem for ceff from the CFT side.

At the special point λ = 0, we can obtain a markedly different result. In the IR limit

k → 0, the operator O with dimension ∆ becomes an operator with dimension 2∆ − d/2,

as seen from the behavior

〈O(k)O(−k)〉 ∼ k4∆−2d. (3.26)

The constraint (3.4) leads to d/2 − 2 ≤ 2∆ − d/2 ≤ d/2, and hence the lower bound of

2∆ − d/2 violates the unitarity bound. However, this may be fine since the disordered

system is not a closed unitary system. The analysis of the effective central charge ceff at

λ = 0 seems to need a special care as discussed in the appendix B and we leave it as a

future problem. Observe that the IR limit is not fully gapped, but rather the theory flows

into another critical field theory. As it becomes clear from the RG analysis in the next

section, the random fixed point corresponds to the infinite randomness limit (f → ∞).

This behavior could be comparable with random vector potential models of Anderson

localization [37] or random quantum spin chains [38].

In principle, we can extend our computations to higher point functions by including

interaction terms in (3.21). In the case of a cubic coupling, we can add to (3.19) a cubic

term like

Scubic =

∫

ddk1d
dk2 C(k1, k2)β(k1)β(k2)β(−k1 − k2), (3.27)

where C(k1, k2) is related to the three point function in momentum space for f = 0 via

the standard rule [28, 29].

It is also possible to add more general multi-trace interactions
∫

ddxW (O(x)) in the

boundary CFT. Correspondingly, in the holographic description, we need to add the po-

tential term
∫

ddxW (β(x)) to (3.19), which leads to the generalized action

S = K

∫

ddxddy

∑n
i=1 βi(x)βi(y)

|x − y|2(d−∆)
+

∫

ddx



−f

2

(

n
∑

i=1

βi(x)

)2

+

n
∑

i=1

W (βi(x))



 , (3.28)

where K is a numerical constant.

Similarly, we can consider more general probability distributions for disorder other

than the gaussian white-noise. After the theory is replicated, it leads to a deformation

(−1)

∞
∑

p=1

(−1)p

p!

∫

ddx1 · · ·
∫

ddxpg(x1) · · · g(xp)
c ∑

a1,...,ap

Oa1(x1) · · · Oap(xp), (3.29)

where g(x1) · · · g(xp)
c

is the p-th cumulant of the probability distribution P [g(x)].
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3.3 Examples of disorder systems in AdS/CFT

3.3.1 Random N = 4 super Yang-Mills

As the first example, we can consider the disordered system of N = 4 super Yang-Mills

theory in four dimensions by a random deformation (2.1). We can take O to be a 1/2 BPS

operator with ∆ = 2 made of two transverse scalars, i.e. Oab = Tr[ΦaΦb] − 1
6δabTr[ΦcΦc].

In this case, the condition (2.5) is saturated and therefore the RG flow is logarithmic.

3.3.2 Random O(N) magnet

Klebanov and Polyakov [13] conjectured that the massless fields in AdS4 with even spins

describe the singlet sector of the three-dimensional critical O(N) vector model in the large

N limit. By using the vector field ~φ with N components, the action of the O(N) vector

model is

S =
1

2

∫

d3x

[

∂~φ · ∂~φ +
λ

2N
(~φ · ~φ)2

]

. (3.30)

There are two critical points; One is at λ = 0, i.e., the free field theory. The other is at

the end point of the RG flow induced by the second term in (3.30), which is interpreted as

a double trace deformation by setting O = ~φ · ~φ in section 3.1. Notice that the dimension

of O2 = (~φ · ~φ)2 is 2∆ = 2 and thus it is relevant. In the IR fixed point, the conformal

dimension of O changes into d − ∆ = 2 and then O2 becomes irrelevant.

Now, starting from the O(N) vector model, we introduce the randomness via the

interaction
∫

d3xg(x) ~φ(x) · ~φ(x). In the replica method, this disordered system is described

by the n → 0 limit of the following system

S =
1

2

∫

d3x





n
∑

i=1

∂~φi · ∂~φi −
f

N

n
∑

i,j=1

(~φi · ~φi)(~φj · ~φj) +
λ

2N

n
∑

i=1

(~φi · ~φi)
2



 . (3.31)

Its holographic description is precisely given by the model (3.19) analyzed in the previous

subsection. We then conclude that whenever λ 6= 0, disorder is innocuous in the IR limit.

In particular, disorder is an irrelevant perturbation at the non-trivial fixed point of (3.30),

which agrees with the well-known fact for the 3D O(N) magnets with N ≥ 2. (See, for

example, [39, 40].)

3.4 Comments on replica symmetry breaking

The replica symmetry is the symmetry under a permutation of fields among different

replicas, such as βi → βj (i 6= j) in our setup. The previous analysis (3.19) clearly preserves

the replica symmetry as all of βi are vanishing. The breaking of the replica symmetry

typically occurs when there are many vacua in the replica theory. If this happens, the

analysis becomes more non-trivial because the definition of order parameter (or mean field)

of randomness gets complicated. A famous such example is the problem of the spin-glasses

(see e.g. [1]).

Indeed, we can find examples where the replica symmetry is spontaneously broken in

our holographic setup as follows. If we are interested in the IR limit, we can drop off the
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first term in (3.19) and it is straightforward to study the vacuum structure of this system

from the potential terms. By choosing W (β) appropriately,9 we can realize situations where

the potential
∑

i W (βi) has only the trivial vacua,10 i.e., βi = 0, while the potential with

the term proportional to f has multiple vacua with βi 6= βj.

4. Field theory analysis in the planar limit

In this section, we show that the two point functions (3.24) and (3.25) obtained from our

holographic method can be reproduced from field theoretic calculations in the planar limit.

This confirms the validity of our formulation of the holographic replica method. Before

considering the replicated case, we reproduce from the field theory calculations the two

point function (3.14) in the case of the deformation of (3.9)

Sint = λ

∫

ddxΦpert(x), Φpert(x) =
1

2
(O(x))2. (4.1)

In order to consider the renormalization of λ and O, we need to compute beta function βλ

and anomalous dimension γO. In the large N limit, non-trivial contributions come only

from the two point function 〈O(x)O(0)〉 = v/|x|2∆ with v = π−d/2 (2∆−d)Γ(∆)
Γ(∆−d/2) , and those

from higher point functions are suppressed (see, e.g., [23]). Therefore, divergent terms arise

only from the following operator product expansions (OPEs) as

Φpert(x)Φpert(0) ∼
2v

|x|2∆ Φpert(0), Φpert(x)O(0) ∼ v

|x|2∆O(0). (4.2)

From these OPEs we can obtain the beta functions following a standard analysis of quantum

field theories11

d

d ln |k| λ̃(k) = βλ̃ = (2∆ − d)λ̃(k) + (λ̃(k))2, γO = ∆ +
1

2
λ̃(k), (4.3)

where we redefine λ̃ = 2d−2∆(2∆−d)Γ(d/2−∆)
Γ(∆−d/2) λ. Notice that even though we included only

the leading order corrections to λ, the result is exact in the large N limit. The beta

function (4.3) leads to

λ̃(k) =
(d − 2∆)λ̃0

|k|d−2∆ + λ̃0

. (4.4)

Since the RG flow equation is given by

[

d

d ln |k| − βλ
d

dλ
+ d − 2γO

]

〈O(k)O(−k)〉 = 0, (4.5)

9For example, we can realize this situation if we assume dW (β)
dβ

is a oscillating function so that its average

is increasing and dW (β)
dβ

= 0 has only a single solution β = 0.
10Here we include metastable vacua into our definition of vacua.
11For an extensive analysis of RG flows in the n = 2 case, refer to the third paper in [36].
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the two point function is

〈O(k)O(−k)〉 = C exp

(

−
∫ ln |k|

d ln |k′|(d − 2γO(k′))

)

=
G(k)

1 + λ0G(k)
. (4.6)

The coefficient C is fixed such that 〈O(k)O(−k)〉 = G(k) for λ0 = 0.

Next let us introduce furthermore disorder (2.1) with the gaussian distribution (2.2).

In the replica method the disordered system can be represented by introducing n copies of

the CFT with Oi(x) (i = 1, 2, · · · , n) whose OPEs are Oi(x)Oj(0) ∼ δi,jv/|x|2∆. Moreover

we deform the n copies of the CFT by (3.18)

Sint = −f

∫

ddxΦpert(x) + λ

∫

ddxΨpert(x), (4.7)

Φpert(x) =
1

2

(

n
∑

i=1

Oi(x)

)2

, Ψpert(x) =
1

2

n
∑

i=1

(Oi(x))2. (4.8)

As in the previous analysis, we now reproduce the two point functions (3.24) and (3.25).

From the OPE coefficients, we read off the beta functions as12

d

d ln |k| f̃(k) = βf̃ = (2∆ − d)f̃(k) − n(f̃(k))2 + 2f̃(k)λ̃(k),

d

d ln |k| λ̃(k) = βλ̃ = (2∆ − d)λ̃(k) + (λ̃(k))2. (4.9)

We find, therefore,

f̃(k) − λ̃(k)

n
=

(d − 2∆)(f̃0 − λ̃0/n)

|k|d−2∆ + λ̃0 − nf̃0

, λ̃(k) =
(d − 2∆)λ̃0

|k|d−2∆ + λ̃0

. (4.10)

For computing the anomalous dimensions it is convenient to rotate the operators as

Ô0(x) =
1√
n

n
∑

i=1

Oi(x), Ôj(x) = Oj(x) − 1

n

n
∑

i=1

Oi(x), (4.11)

with j = 1, · · · , n, according to the irreducible representation of symmetric group Sn.

Here the number of independent operators does not change since
∑n

j=1 Ôj = 0. In this

normalization we have Ô0(x)Ô0(0) ∼ v/|x|2∆ and Ôi(x)Ôj(0) ∼ (δi,j − 1
n)v/|x|2∆. The

anomalous dimensions of new operators are obtained just like before as

γÔ0
= ∆ +

1

2
λ̃ − n

2
f̃ , γÔj

= ∆ +
1

2
λ̃, (4.12)

and solving the RG flow equation we have

〈Ô0(k)Ô0(−k)〉n =
G(k)

1 + (λ0 − nf0)G(k)
, 〈Ôi(k)Ôj(−k)〉n =

(

δi,j −
1

n

)

G(k)

1 + λ0G(k)
.

(4.13)

12When specialized to the case of the random O(N) magnet discussed in section 3.3.2, the beta functions

are consistent with the known results to the leading order in N . See, for example, [39, 40].
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Rotating the operators back again, now we can reproduce the previous results of the

two point functions (3.22) and (3.23), therefore after taking n → 0 limit we have (3.24)

and (3.25).

The method with the RG flow equation might be a standard way to compute correlation

functions, but there is another way in a field theory viewpoint via a Hubbard-Stratonovich

transformation first considered by Gubser and Klebanov [33]. The partition function we

consider can be rewritten as

Zn
f [J ] =

(

det− 1

f

)
1
2
(

det
1

λ

)
n
2
∫

Dg(x)
n
∏

i=1

Dσi(x)× (4.14)

×
〈

e
R

ddx[− 1
2f

g(x)2+ 1
2λ

Pn
i=1 σ2

i +
Pn

i=1(g(x)+σi(x)+Ji(x))Oi(x)]
〉

0
,

where the subscript 0 suggests that the correlation function is computed without pertur-

bation, i.e. with f = λ = 0. Integration over σi reproduces the double trace deformation
λ
2

∫

ddx
∑

i O2
i . Notice that the non-trivial contribution arises only from the two point

function 〈Oi(x)Oj(0)〉 = δi,jG(x) (≡ δi,jv/|x|2∆) in the large N limit. From this observa-

tion we find

Zn
f [J ] =

(

det− 1

f

)
1
2
(

det
1

λ

)
n
2
∫

Dg(x)

n
∏

i=1

Dσi(x)× (4.15)

× e
R

ddx[− 1
2f

g(x)2+ 1
2λ

Pn
i=1 σ2

i (x)+ 1
2

Pn
i=1(g(x)+σi(x)+Ji(x))Ĝ(g(x)+σi(x)+Ji(x))]

,

where Ĝg(x) =
∫

ddy G(x− y)g(y). Since this expression is gaussian with respect to g and

σi, we can easily integrate them out. The result is13

Zn
f [J ] = (1 + λĜ)−

n−1
2 (1 + (λ − nf)Ĝ)−

1
2× (4.16)

× e
1
2

R

ddx[
Pn

i=1 Ji(x)Q̂Ji(x)+(
Pn

i=1 Ji(x))Q̂′(
Pn

i=1 Ji(x))],

with

Q̂ =
Ĝ

1 + λĜ
, Q̂′ =

fQ̂2

1 − nfQ̂
. (4.17)

Taking derivatives with respect to Ji twice, we obtain the two point functions (3.22)

and (3.23) and again reproduce (3.24) and (3.25) in the n → 0 limit.

5. Conclusions and discussions

In this paper, we have studied the quenched disordered systems with arbitrary strength of

disorder by applying the AdS/CFT correspondence. We formulate the holographic replica

method by employing the setup of the double trace deformation in AdS/CFT. We have

calculated the two point functions in our disordered system in the planar limit from both

13The prefactor corresponds to the O(N0) corrections to the partition function, and it can be used to

compute the shift of central charge along the RG flow. See, for example, [33] and appendix B.
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the AdS and CFT sides and got the same result. We found that the scaling of the two point

functions evolves non-trivially under the RG flow. Especially, if we fine tune the parameter

to λ = 0, then the two point functions in the IR limit show remarkably new behavior. In

the generic case λ > 0, the IR limit is essentially the same as the fixed point obtained

by the standard double trace deformation. As in appendix B it is possible to analyze the

effective central charge ceff using the AdS/CFT correspondence. There we observe that

it decreases under the RG flow between two fixed points when λ > 0. A more thorough

analysis of this would be very intriguing as no proof of the c-theorem about ceff has been

known so far.

It is important to remember that the subtle limit n → 0 of the replica method does

not cause any problems in our examples. We also pointed out that the replica symmetry

may be broken if we consider particular deformations of the CFT. It may also be intriguing

to note that the limit n → 0 offers us a formal way to construct AdS duals to non-unitary

CFTs with the central charge c = 0.

Even though our holographic formalism of the replica method covers quantum dis-

ordered systems, our explicit computations are performed only for classical disordered

systems. Thus here we would like to mention the application of our holographic replica

method to quantum disordered systems. Since the random coupling g(x) does not depend

on the time t, the frequency ω of the field βi in (3.19) should be vanishing. Thus the

results (3.24) and (3.25) remain the same only when ω = 0; Otherwise we will get the same

result as the one in the pure system, i.e., with f = 0. This triviality is because we are

taking the planar limit in the presence of the multi-trace interactions. In order to obtain

ω-dependent results, we need to go beyond the tree level analysis in the gravity theory.

A similar situation occurs when we are considering two point functions of other opera-

tors, such as the currents Jµ(t, x). At the tree level, we do not find any f -dependence in

both classical and quantum disorder systems. These problems of one loop analysis clearly

deserve future studies.

In addition to the replica method, we know another method which also enables us

to study disordered systems, called the supersymmetric method, as mentioned before. In

order to deal with the randomness in a theory with scalar fields and Dirac fermions we

add their superpartners (or ghosts). In this procedure, the bosonic global symmetry, such

as O(N), becomes its supergroup extension, such as OSp(N |N). It may be interesting to

find a similar method for Yang-Mills gauge theories. Naively, one may think that we can

replace the bosonic gauge group U(N) with the supergroup U(N |M) (see [41] for gauge

theories with supergroup gauge symmetries). However, we can easily see that this leads

to what we precisely want only at the vanishing coupling gYM = 0. Therefore we need a

modification or another idea.
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A. Order/disorder phase transition

In condensed matter systems, randomness often competes with ordering tendencies. For

example, for a spin system (e.g. the Ising model) with critical temperature Tc, the system

is in an ordered phase (e.g. ferromagnetic phase) for T < Tc. Even if we introduce a

small amount of disorder the system will still be in the ordered phase. However, if the

randomness becomes strong enough, a phase transition will occur and the system will

evolve into a disordered phase. This is a standard story, for example, in the ferromagnets

in the presence of random magnetic field (see e.g. [10]).

Such competition can be described in our holographic approach. In the spin system

examples, we regard O as the spin operator σ. Then an important point is that we omit

the i = j terms in the interaction terms − f
2

∑

i,j OiOj (see (3.18)) since the operator : O2 :

does not exist in spin systems like the Ising model.14 Another point is that when T < Tc

and f = 0, the system is in a ordered phase. As an example we express this with the

spontaneous breaking of the Z2 symmetry β → −β by adding the standard wine bottle

potential W (β) = −m2β2 + λβ4. Notice that m2 > 0 when T < Tc, while m2 = 0 at

T = Tc. In summary, we reach the following action of β

S[β]n =

∫

ddk

[

∑n
i=1 β2

i

2G
− f

2

n
∑

i6=j

βiβj +
∑

i

(−m2β2
i + λβ4

i )

]

. (A.1)

Assuming that the vacuum preserves the replica symmetry, i.e., β1 = β2 = · · · = βn ≡ β,

we can rewrite (A.1) as follows

S[β]n = n

∫

ddk

[

1

2G
β2 − f

2
(n − 1)β2 − m2β2 + λβ4

]

. (A.2)

In the n → 0 limit, the term due to the randomness behaves like f
2β2 and it com-

petes with the spontaneous breaking of the Z2 symmetry. Therefore we can realize the

disorder/order phase transition when we increase the randomness parameter f in our

holographic description.

B. Effective central charges in disordered systems

We can measure the degrees of freedom of a given CFT in even dimensions by calculating

the central charge. Let us suppose that the replica theory has a non-trivial fixed point.

14For example, if we consider the Ising model, the OPE of the spin operators is σ · σ = I + E . This

OPE produces the energy density operator E , but this just shifts the critical temperature. In contrast, if

we consider the large N O(N) vector model, then the operator : O
2 : exists and we have to keep it as

in (3.19). Even in the latter case, we can add the interaction term as in (3.18) with λ = f and realize a

system without the i = j terms.
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Then we can define the central charge of this new CFT as

c(n) = nc0 + ∆c(n), (B.1)

for any fixed n. Here c0 is the central charge of the original CFT without any deformations.

For example, in the N = 4 U(N) gauge theory case it is given by c0 = N2/4. The term

∆c(n) is due to the deformations and comes from one-loop order corrections O(N0). In the

random system, we can still define so called the effective central charge ceff (see e.g. [25, 8])

ceff ≡ dc(n)

dn

∣

∣

∣

∣

n=0

. (B.2)

Physically, this central charge is equal to the coefficient of the OPE of energy stress tensors

at the random fixed point [25]

〈TµνTµ′ν′〉 ∝ ceff . (B.3)

In a usual unitary CFT, there is a c-theorem, which states that the central charge is

decreasing under the RG flow. However, in disordered systems, no c-theorem is known for

ceff even if the replicated theory with fixed n is unitary, because finally we need to take

the formal n → 0 procedure.

In our setup of AdS/CFT, the order O(N0) correction to the central charge is propor-

tional to the one from the one-loop effective potential V1-loop = −1
2TrAdS(−� + m2) of the

scalar field. Since our formulation of holographic replica model is closely related to the case

with the double trace deformation (3.9), let us first review the case analyzed in [32]. In

the case with the double trace deformation (3.9), the λ-dependence of Vdouble comes from

the boundary condition for the field φ(x, z) imposed at the boundary z = 0. For α(x) and

β(x) in (3.3), we assign

α(x) = −λβ(x), (B.4)

which can be obtained from the relations (3.12) and (3.6). The one-loop vacuum energy

was explicitly calculated in [32] as

Vdouble(λ) = − 1

2d−2πd/2Γ(d/2)Rd+1

∫ ν

0
dν̃

ν̃

Γ(ν̃)Γ(1 − ν̃)

∫ ∞

0
dp

pd−1λ̃

p2ν̃ + λ̃
Kν̃(p)2, (B.5)

where ν = d
2 − ∆ and λ̃ = 22ν Γ(1+ν)

Γ(1−ν)λz2ν . Here z is the radial coordinate and R is the

radius of AdSd+1. In the above expression, we subtracted the divergent piece which does

not depend on f , and which would actually be canceled by other contributions due to

the supersymmetry. From this result we can show that Vdouble(λ = ∞) < 0, and this is

consistent with the c-theorem as it is proportional to cIR − cUV.

Now we compute the one-loop vacuum energy for the product of n copies of the CFT

with the deformation (3.18). In this case the boundary conditions are modified as

αj = f
n
∑

i=1

βi − λβj (B.6)
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for j = 1, 2, · · ·, n, or performing the redefinitions as in footnote 7,

α̂0 = −(λ − nf)β̂0, α̂j = −λβ̂j . (B.7)

Here we should notice that
∑

j α̂j =
∑

j β̂j = 0 by construction. Therefore, by comparing

with the previous result, we find

Vreplica(f, λ, n) = Vdouble (λ − nf) + (n − 1)Vdouble(λ). (B.8)

Notice that the identity Vreplica(f, λ, n = 0) = 0 holds as expected. What we are interested

in is the shift of the effective central charge ceff (B.2) under the RG flow;15

∆ceff =
d∆c(n)

dn

∣

∣

∣

∣

n=0

= A
(

Vdouble(λ) − f · V ′
double(λ)

)

, (B.9)

where A is a positive constant.16

We would like to calculate the difference between ceff at the UV fixed point λ = f = 0

and at the IR fixed point. If we assume λ > 0, then ceff of the IR fixed point can be

obtained by setting λ = ∞ (recall the analysis of the RG flow in section 4). Then we

immediately find

cIR
eff − cUV

eff = A · Vdouble(∞) < 0. (B.10)

This seems to support the c-theorem like property for the effective central charge of our

disordered CFT. However, we would like to stress again that the c-theorem for ceff has

not been proven at present and a counter example may be found in more generic cases.

This value of cIR
eff − cUV

eff (B.10) is actually the same as that of the standard double trace

deformation [32, 33] even in the presence of the random perturbation.

Moreover, if we restrict ourselves to the case with 0 < f < λ, then we can show that

∆ceff is always non-positive for any values of f and λ from the expression (B.5). Therefore

we conclude that ∆ceff is a monotonically decreasing function of f and λ in this case.

In the remaining special case λ = 0, we would get naively the opposite result cIR
eff−cUV

eff >

0. However, this analysis is not reliable because Vdouble (−nf) in (B.8) is divergent for any

values of n > 0. This subtlety arises since at λ = 0 the system of (3.19) becomes unstable

as mentioned before. We may instead deform the theory by, for example, a quartic term

β4 so that it become stabilized. We would like to leave the analysis of ceff at λ = 0 as a

future problem.

References

[1] K. Binder and A.P. Young, Spin glasses: experimental facts, theoretical concepts and open

questions, Rev. Mod. Phys. 58 (1986) 801.

[2] See for example, P.A. Lee and T.V. Ramakrishnan, Disordered electronic systems, Rev. Mod.

Phys. 57 (1985) 287.

15Strictly speaking, the notion of central charge can be used only at the conformal points. Therefore we

should regard (B.9) as a definition of an analogue of Zamolodchikov’s c-function.

16It is explicitly given by A = c0
8πG

(5)
N

R2

2d
.

– 18 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=RMPHA%2C58%2C801
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=RMPHA%2C57%2C287
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=RMPHA%2C57%2C287


J
H
E
P
1
2
(
2
0
0
8
)
0
6
5

[3] See for example, D. Belitz and T.R. Kirkpatrick, The Anderson-Mott transition, Rev. Mod.

Phys. 66 (1994) 261.

[4] R. Maynard and R. Rammal, Random antiphase state and frustration in two dimensions, J.

Phys. (Paris) Lett. 43 (1982) L347;

Y. Ozeki and H. Nishimori, Phase diagram and critical exponents of the +or-J Ising model in

finite dimensions by Monte Carlo renormalization group, J. Phys. Soc. Jpn. 56 (1987) 1568;

Y. Ozeki and H. Nishimori, Phase diagram of the +or-J Ising model in two dimensionsJ.

Phys. Soc. Jpn. 56 (1987) 3265;

W.L. Mcmillan, Domain wall renormalization group study of the two-dimensional random

Ising model, Phys. Rev. B 29 (1984) 4026;

Y. Ueno and Y. Ozeki, Interfacial approach to d-dimensional +or-J Ising models in the

neighborhood of the ferromagnetic phase boundary, J. Stat. Phys. 64 (1991) 227;

H. Kitatani and T. Oguchi, Ferromagnetic-nonferromagnetic phase boundary on the

two-dimensional +or-J Ising model, J. Phys. Soc. Jpn. 59 (1990) 3823;

H. Kitatani, The critical exponent nu along the ferromagnetic-nonferromagnetic phase

boundary in the two-dimensional +or-J Ising model, J. Phys. Soc. Jpn. 61 (1992) 1598;

Y. Ozeki, Ground state properties of the +or-J Ising model in two dimensions, J. Phys. Soc.

Jpn. 59 (1990) 3531.

[5] A.M.M. Pruisken, Field theory, scaling and the localization problem, in The quantum Hall

effect, 2nd ed., Springer-Verlag, Berlin Germany (1990).

[6] S.V. Kravchenko and M.P. Sarachik, Metal insulator transition in two-dimensional electron

systems, Rep. Prog. Phys. 67 (2004) 1.

[7] J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv.

Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200];

O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories,

string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111].

[8] A.W.W. Ludwig and J.L. Cardy, Perturbative evaluation of the conformal anomaly at new

critical points with applications to random systems, Nucl. Phys. B 285 (1987) 687.

[9] D. Bernard, (Perturbed) conformal field theory applied to 2D disordered systems: an

introduction, hep-th/9509137.

[10] J. Cardy, Scaling and renormalization in statistical physics, Cambridge Lecture Notes in

Physics, Cambridge University Press, Cambridge U.K. (1996).

[11] J.L. Cardy, Logarithmic correlations in quenched random magnets and polymers,

cond-mat/9911024.

[12] V. Gurarie and A.W.W. Ludwig, Conformal field theory at central charge c = 0 and

two-dimensional critical systems with quenched disorder, hep-th/0409105.

[13] I.R. Klebanov and A.M. Polyakov, AdS dual of the critical O(N) vector model, Phys. Lett. B

550 (2002) 213 [hep-th/0210114].

[14] C.P. Herzog, P. Kovtun, S. Sachdev and D.T. Son, Quantum critical transport, duality and

M-theory, Phys. Rev. D 75 (2007) 085020 [hep-th/0701036];

S.A. Hartnoll and P. Kovtun, Hall conductivity from dyonic black holes, Phys. Rev. D 76

(2007) 066001 [arXiv:0704.1160];

– 19 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=RMPHA%2C66%2C261
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=RMPHA%2C66%2C261
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CB29%2C4026
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C2%2C231
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C2%2C231
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=IJTPB%2C38%2C1113
http://arxiv.org/abs/hep-th/9711200
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRPLC%2C323%2C183
http://arxiv.org/abs/hep-th/9905111
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB285%2C687
http://arxiv.org/abs/hep-th/9509137
http://arxiv.org/abs/cond-mat/9911024
http://arxiv.org/abs/hep-th/0409105
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB550%2C213
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB550%2C213
http://arxiv.org/abs/hep-th/0210114
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD75%2C085020
http://arxiv.org/abs/hep-th/0701036
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD76%2C066001
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD76%2C066001
http://arxiv.org/abs/0704.1160


J
H
E
P
1
2
(
2
0
0
8
)
0
6
5

S.A. Hartnoll, P.K. Kovtun, M. Muller and S. Sachdev, Theory of the Nernst effect near

quantum phase transitions in condensed matter and in dyonic black holes, Phys. Rev. B 76

(2007) 144502 [arXiv:0706.3215];

S.A. Hartnoll and C.P. Herzog, Ohm’s Law at strong coupling: s duality and the cyclotron

resonance, Phys. Rev. D 76 (2007) 106012 [arXiv:0706.3228];

A. Karch and A. O’Bannon, Metallic AdS/CFT, JHEP 09 (2007) 024 [arXiv:0705.3870];

A. O’Bannon, Hall conductivity of flavor fields from AdS/CFT, Phys. Rev. D 76 (2007)

086007 [arXiv:0708.1994].

[15] E. Keski-Vakkuri and P. Kraus, Quantum Hall effect in AdS/CFT, JHEP 09 (2008) 130

[arXiv:0805.4643];

J.L. Davis, P. Kraus and A. Shah, Gravity dual of a quantum Hall plateau transition, JHEP

11 (2008) 020 [arXiv:0809.1876].

[16] S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a holographic superconductor, Phys.

Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295];

S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Holographic superconductors, JHEP 12

(2008) 015 [arXiv:0810.1563].

[17] S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT,

Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001];

S. Ryu and T. Takayanagi, Aspects of holographic entanglement entropy, JHEP 08 (2006)

045 [hep-th/0605073];

T. Nishioka and T. Takayanagi, AdS bubbles, entropy and closed string tachyons, JHEP 01

(2007) 090 [hep-th/0611035];

I.R. Klebanov, D. Kutasov and A. Murugan, Entanglement as a probe of confinement, Nucl.

Phys. B 796 (2008) 274 [arXiv:0709.2140];

T. Azeyanagi, A. Karch, T. Takayanagi and E.G. Thompson, Holographic calculation of

boundary entropy, JHEP 03 (2008) 054 [arXiv:0712.1850];

A. Pakman and A. Parnachev, Topological entanglement entropy and holography, JHEP 07

(2008) 097 [arXiv:0805.1891];

M. Fujita, T. Nishioka and T. Takayanagi, Geometric entropy and Hagedorn/deconfinement

transition, JHEP 09 (2008) 016 [arXiv:0806.3118];

I. Bah, L.A. Pando Zayas and C.A. Terrero-Escalante, Holographic geometric entropy at

finite temperature from black holes in global Anti de Sitter spaces, arXiv:0809.2912.

[18] D.T. Son, Toward an AdS/cold atoms correspondence: a geometric realization of the

Schrödinger symmetry, Phys. Rev. D 78 (2008) 046003 [arXiv:0804.3972];

K. Balasubramanian and J. McGreevy, Gravity duals for non-relativistic CFTs, Phys. Rev.

Lett. 101 (2008) 061601 [arXiv:0804.4053];

C.P. Herzog, M. Rangamani and S.F. Ross, Heating up galilean holography, JHEP 11 (2008)

080 [arXiv:0807.1099];

J. Maldacena, D. Martelli and Y. Tachikawa, Comments on string theory backgrounds with

non-relativistic conformal symmetry, JHEP 10 (2008) 072 [arXiv:0807.1100];

A. Adams, K. Balasubramanian and J. McGreevy, Hot spacetimes for cold atoms, JHEP 11

(2008) 059 [arXiv:0807.1111];

S. Kachru, X. Liu and M. Mulligan, Gravity duals of Lifshitz-like fixed points, Phys. Rev. D

78 (2008) 106005 [arXiv:0808.1725];

F.-L. Lin and S.-Y. Wu, Non-relativistic holography and singular black hole,

arXiv:0810.0227;

– 20 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CB76%2C144502
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CB76%2C144502
http://arxiv.org/abs/0706.3215
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD76%2C106012
http://xxx.lanl.gov/abs/0706.3228
http://jhep.sissa.it/stdsearch?paper=09%282007%29024
http://arxiv.org/abs/0705.3870
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD76%2C086007
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD76%2C086007
http://arxiv.org/abs/0708.1994
http://jhep.sissa.it/stdsearch?paper=09%282008%29130
http://arxiv.org/abs/0805.4643
http://jhep.sissa.it/stdsearch?paper=11%282008%29020
http://jhep.sissa.it/stdsearch?paper=11%282008%29020
http://arxiv.org/abs/0809.1876
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C101%2C031601
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C101%2C031601
http://arxiv.org/abs/0803.3295
http://jhep.sissa.it/stdsearch?paper=12%282008%29015
http://jhep.sissa.it/stdsearch?paper=12%282008%29015
http://arxiv.org/abs/0810.1563
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C96%2C181602
http://arxiv.org/abs/hep-th/0603001
http://jhep.sissa.it/stdsearch?paper=08%282006%29045
http://jhep.sissa.it/stdsearch?paper=08%282006%29045
http://arxiv.org/abs/hep-th/0605073
http://jhep.sissa.it/stdsearch?paper=01%282007%29090
http://jhep.sissa.it/stdsearch?paper=01%282007%29090
http://arxiv.org/abs/hep-th/0611035
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB796%2C274
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB796%2C274
http://arxiv.org/abs/0709.2140
http://jhep.sissa.it/stdsearch?paper=03%282008%29054
http://arxiv.org/abs/0712.1850
http://jhep.sissa.it/stdsearch?paper=07%282008%29097
http://jhep.sissa.it/stdsearch?paper=07%282008%29097
http://arxiv.org/abs/0805.1891
http://jhep.sissa.it/stdsearch?paper=09%282008%29016
http://arxiv.org/abs/0806.3118
http://arxiv.org/abs/0809.2912
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD78%2C046003
http://arxiv.org/abs/0804.3972
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C101%2C061601
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C101%2C061601
http://arxiv.org/abs/0804.4053
http://jhep.sissa.it/stdsearch?paper=11%282008%29080
http://jhep.sissa.it/stdsearch?paper=11%282008%29080
http://arxiv.org/abs/0807.1099
http://jhep.sissa.it/stdsearch?paper=10%282008%29072
http://arxiv.org/abs/0807.1100
http://jhep.sissa.it/stdsearch?paper=11%282008%29059
http://jhep.sissa.it/stdsearch?paper=11%282008%29059
http://arxiv.org/abs/0807.1111
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD78%2C106005
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD78%2C106005
http://arxiv.org/abs/0808.1725
http://arxiv.org/abs/0810.0227


J
H
E
P
1
2
(
2
0
0
8
)
0
6
5

S.A. Hartnoll and K. Yoshida, Families of IIB duals for nonrelativistic CFTs,

arXiv:0810.0298;

M. Schvellinger, Kerr-AdS black holes and non-relativistic conformal QM theories in diverse

dimensions, JHEP 12 (2008) 004 [arXiv:0810.3011].

[19] S.A. Hartnoll and C.P. Herzog, Impure AdS/CFT, Phys. Rev. D 77 (2008) 106009

[arXiv:0801.1693].

[20] R. Balian, R. Maynard and G. Toulouse, Ill condensed matter, Les Houches, North-Holland,

Amsterdam The Netherlands (1978).

[21] M. Mezard, G. Parisi and M. Virasoro, Spin glass theory and beyond, World Scientific,

Singapore (1987).

[22] O. Aharony, M. Berkooz and E. Silverstein, Multiple-trace operators and non-local string

theories, JHEP 08 (2001) 006 [hep-th/0105309].

[23] E. Witten, Multi-trace operators, boundary conditions and AdS/CFT correspondence,

hep-th/0112258.

[24] V. Gurarie, c-theorem for disordered systems, Nucl. Phys. B 546 (1999) 765

[cond-mat/9808063].

[25] J. Cardy, The stress tensor in quenched random systems, cond-mat/0111031.

[26] K.B. Efetov, Supersymmetry and theory of disordered metals, Adv. Phys. 32 (1983) 53;

Supersymmetry in disorder and chaos, Cambridge University Press, Cambridge U.K. (1997).

[27] W. Mück, An improved correspondence formula for AdS/CFT with multi-trace operators,

Phys. Lett. B 531 (2002) 301 [hep-th/0201100].

[28] S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from non-critical

string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109].

[29] E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253

[hep-th/9802150].

[30] P. Breitenlohner and D.Z. Freedman, Stability in gauged extended supergravity, Ann. Phys.

(NY) 144 (1982) 249.

[31] I.R. Klebanov and E. Witten, AdS/CFT correspondence and symmetry breaking, Nucl. Phys.

B 556 (1999) 89 [hep-th/9905104].

[32] S.S. Gubser and I. Mitra, Double-trace operators and one-loop vacuum energy in AdS/CFT,

Phys. Rev. D 67 (2003) 064018 [hep-th/0210093].

[33] S.S. Gubser and I.R. Klebanov, A universal result on central charges in the presence of

double-trace deformations, Nucl. Phys. B 656 (2003) 23 [hep-th/0212138].

[34] P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech.

(2004) P06002 [hep-th/0405152].

[35] O. Aharony, A.B. Clark and A. Karch, The CFT/AdS correspondence, massive gravitons and

a connectivity index conjecture, Phys. Rev. D 74 (2006) 086006 [hep-th/0608089].

[36] E. Kiritsis, Product CFTs, gravitational cloning, massive gravitons and the space of

gravitational duals, JHEP 11 (2006) 049 [hep-th/0608088];

E. Kiritsis and V. Niarchos, (Multi)matrix models and interacting clones of Liouville gravity,

JHEP 08 (2008) 044 [arXiv:0805.4234]; Interacting string multi-verses and holographic

instabilities of massive gravity, arXiv:0808.3410.

– 21 –

http://arxiv.org/abs/0810.0298
http://jhep.sissa.it/stdsearch?paper=12%282008%29004
http://arxiv.org/abs/0810.3011
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD77%2C106009
http://arxiv.org/abs/0801.1693
http://jhep.sissa.it/stdsearch?paper=08%282001%29006
http://arxiv.org/abs/hep-th/0105309
http://arxiv.org/abs/hep-th/0112258
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB546%2C765
http://arxiv.org/abs/cond-mat/9808063
http://arxiv.org/abs/cond-mat/0111031
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=ADPHA%2C32%2C53
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB531%2C301
http://arxiv.org/abs/hep-th/0201100
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB428%2C105
http://arxiv.org/abs/hep-th/9802109
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C2%2C253
http://arxiv.org/abs/hep-th/9802150
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=APNYA%2C144%2C249
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=APNYA%2C144%2C249
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB556%2C89
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB556%2C89
http://arxiv.org/abs/hep-th/9905104
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD67%2C064018
http://arxiv.org/abs/hep-th/0210093
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB656%2C23
http://arxiv.org/abs/hep-th/0212138
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JSTAT%2C0406%2CP002
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JSTAT%2C0406%2CP002
http://arxiv.org/abs/hep-th/0405152
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD74%2C086006
http://arxiv.org/abs/hep-th/0608089
http://jhep.sissa.it/stdsearch?paper=11%282006%29049
http://arxiv.org/abs/hep-th/0608088
http://jhep.sissa.it/stdsearch?paper=08%282008%29044
http://arxiv.org/abs/0805.4234
http://arxiv.org/abs/0808.3410


J
H
E
P
1
2
(
2
0
0
8
)
0
6
5

[37] J.-S. Caux, N. Taniguchi and A.M. Tsvelik, Termination of multifractal behaviour for critical

disordered Dirac fermions, Phys. Rev. Lett. 80 (1998) 1276 [cond-mat/9711109]; Disordered

Dirac fermions: multifractality termination and logarithmic conformal field theories, Nucl.

Phys. B 525 (1998) 671 [cond-mat/9801055];

A.W.W. Ludwig, A free field representation of the OSp(2|2) current algebra at level k = −2

and Dirac fermions in a random SU(2) gauge potential, cond-mat/0012189.

[38] D.S. Fisher, Random antiferromagnetic quantum spin chains, Phys. Rev. B 50 (1994) 3799;

Critical behavior of random transverse-field Ising spin chains, Phys. Rev. B 51 (1995) 6411.

[39] A. Pelissetto and E. Vicari, Randomly dilute spin models: a six-loop field-theoretic study,

Phys. Rev. B 62 (2000) 6393 [cond-mat/0002402].

[40] A. Pelissetto and E. Vicari, Critical phenomena and renormalization-group theory, Phys.

Rept. 368 (2002) 549 [cond-mat/0012164].

[41] T. Okuda and T. Takayanagi, Ghost D-branes, JHEP 03 (2006) 062 [hep-th/0601024].

– 22 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C80%2C1276
http://arxiv.org/abs/cond-mat/9711109
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB525%2C671
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB525%2C671
http://arxiv.org/abs/cond-mat/9801055
http://arxiv.org/abs/cond-mat/0012189
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CB62%2C6393
http://arxiv.org/abs/cond-mat/0002402
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRPLC%2C368%2C549
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRPLC%2C368%2C549
http://arxiv.org/abs/cond-mat/0012164
http://jhep.sissa.it/stdsearch?paper=03%282006%29062
http://arxiv.org/abs/hep-th/0601024

